Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Biol Chem ; 300(5): 107230, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38537699

RESUMO

Arsenite-induced stress granule (SG) formation can be cleared by the ubiquitin-proteasome system aided by the ATP-dependent unfoldase p97. ZFAND1 participates in this pathway by recruiting p97 to trigger SG clearance. ZFAND1 contains two An1-type zinc finger domains (ZF1 and ZF2), followed by a ubiquitin-like domain (UBL); but their structures are not experimentally determined. To shed light on the structural basis of the ZFAND1-p97 interaction, we determined the atomic structures of the individual domains of ZFAND1 by solution-state NMR spectroscopy and X-ray crystallography. We further characterized the interaction between ZFAND1 and p97 by methyl NMR spectroscopy and cryo-EM. 15N spin relaxation dynamics analysis indicated independent domain motions for ZF1, ZF2, and UBL. The crystal structure and NMR structure of UBL showed a conserved ß-grasp fold homologous to ubiquitin and other UBLs. Nevertheless, the UBL of ZFAND1 contains an additional N-terminal helix that adopts different conformations in the crystalline and solution states. ZFAND1 uses the C-terminal UBL to bind to p97, evidenced by the pronounced line-broadening of the UBL domain during the p97 titration monitored by methyl NMR spectroscopy. ZFAND1 binding induces pronounced conformational heterogeneity in the N-terminal domain of p97, leading to a partial loss of the cryo-EM density of the N-terminal domain of p97. In conclusion, this work paved the way for a better understanding of the interplay between p97 and ZFAND1 in the context of SG clearance.

2.
J Mol Biol ; 436(4): 168438, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38185323

RESUMO

A mutant of ubiquitin C-terminal hydrolase L1 (UCHL1) detected in early-onset neurodegenerative patients, UCHL1R178Q, showed higher catalytic activity than wild-type UCHL1 (UCHL1WT). Lying within the active-site pocket, the arginine is part of an interaction network that holds the catalytic histidine in an inactive arrangement. However, the structural basis and mechanism of enzymatic activation upon glutamine substitution was not understood. We combined X-ray crystallography, protein nuclear magnetic resonance (NMR) analysis, enzyme kinetics, covalent inhibition analysis, and biophysical measurements to delineate activating factors in the mutant. While the crystal structure of UCHL1R178Q showed nearly the same arrangement of the catalytic residues and active-site pocket, the mutation caused extensive alteration in the chemical environment and dynamics of more than 30 residues, some as far as 15 Å away from the site of mutation. Significant broadening of backbone amide resonances in the HSQC spectra indicates considerable backbone dynamics changes in several residues, in agreement with solution small-angle X-ray scattering (SAXS) analyses which indicate an overall increase in protein flexibility. Enzyme kinetics show the activation is due to a kcat effect despite a slightly weakened substrate affinity. In line with this, the mutant shows a higher second-order rate constant (kinact/Ki) in a reaction with a substrate-derived irreversible inhibitor, Ub-VME, compared to the wild-type enzyme, an observation indicative of a more reactive catalytic cysteine in the mutant. Together, the observations underscore structural plasticity as a factor contributing to enzyme kinetic behavior which can be modulated through mutational effects.


Assuntos
Domínio Catalítico , Cisteína , Doenças Neurodegenerativas , Ubiquitina Tiolesterase , Humanos , Sítios de Ligação/genética , Cisteína/química , Cisteína/genética , Cinética , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Espalhamento a Baixo Ângulo , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/genética , Difração de Raios X , Doenças Neurodegenerativas/genética
3.
J Biol Chem ; 300(1): 105553, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072060

RESUMO

Proteins can spontaneously tie a variety of intricate topological knots through twisting and threading of the polypeptide chains. Recently developed artificial intelligence algorithms have predicted several new classes of topological knotted proteins, but the predictions remain to be authenticated experimentally. Here, we showed by X-ray crystallography and solution-state NMR spectroscopy that Q9PR55, an 89-residue protein from Ureaplasma urealyticum, possesses a novel 71 knotted topology that is accurately predicted by AlphaFold 2, except for the flexible N terminus. Q9PR55 is monomeric in solution, making it the smallest and most complex knotted protein known to date. In addition to its exceptional chemical stability against urea-induced unfolding, Q9PR55 is remarkably robust to resist the mechanical unfolding-coupled proteolysis by a bacterial proteasome, ClpXP. Our results suggest that the mechanical resistance against pulling-induced unfolding is determined by the complexity of the knotted topology rather than the size of the molecule.


Assuntos
Inteligência Artificial , Proteínas de Bactérias , Dobramento de Proteína , Ureaplasma urealyticum , Modelos Moleculares , Peptídeos , Proteínas de Bactérias/química , Estrutura Terciária de Proteína
4.
Biochem Biophys Res Commun ; 672: 81-88, 2023 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-37343318

RESUMO

CP74 is an engineered circular permutant of a deep trefoil knotted SpoU-TrmD (SPOUT) RNA methyl transferase protein YbeA from E. coli. We have previously established that the circular permutation unties the knotted topology of YbeA and CP74 forms a domain-swapped dimer with a large dimeric interface of ca. 4600 Å2. To understand the impact of domain-swapping and the newly formed hinge region joining the two folded domains on the folding and stability of CP74, the five equally spaced tryptophan residues were individually substituted into phenylalanine to monitor their conformational and stability changes by a battery of biophysical tools. Far-UV circular dichroism, intrinsic fluorescence, and small-angle X-ray scattering dictated minimal global conformational perturbations to the native structures in the tryptophan variants. The structures of the tryptophan variants also showed the conservation of the domain-swapped ternary structure with the exception that the W72F exhibited significant asymmetry in the α-helix 5. Comparative global thermal and chemical stability analyses indicated the pivotal role of W100 in the folding of CP74 followed by W19 and W72. Solution-state NMR spectroscopy and hydrogen-deuterium exchange mass spectrometry further revealed the accumulation of a native-like intermediate state in which the hinge region made important contributions to maintain the domain-swapped ternary structure of CP74.


Assuntos
Escherichia coli , Dobramento de Proteína , Dicroísmo Circular , Cinética , Proteínas , Triptofano
5.
Int J Mol Sci ; 21(20)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053837

RESUMO

Cysteine-based protein tyrosine phosphatases (Cys-based PTPs) perform dephosphorylation to regulate signaling pathways in cellular responses. The hydrogen bonding network in their active site plays an important conformational role and supports the phosphatase activity. Nearly half of dual-specificity phosphatases (DUSPs) use three conserved residues, including aspartate in the D-loop, serine in the P-loop, and asparagine in the N-loop, to form the hydrogen bonding network, the D-, P-, N-triloop interaction (DPN-triloop interaction). In this study, DUSP22 is used to investigate the importance of the DPN-triloop interaction in active site formation. Alanine mutations and somatic mutations of the conserved residues, D57, S93, and N128 substantially decrease catalytic efficiency (kcat/KM) by more than 102-fold. Structural studies by NMR and crystallography reveal that each residue can perturb the three loops and induce conformational changes, indicating that the hydrogen bonding network aligns the residues in the correct positions for substrate interaction and catalysis. Studying the DPN-triloop interaction reveals the mechanism maintaining phosphatase activity in N-loop-containing PTPs and provides a foundation for further investigation of active site formation in different members of this protein class.


Assuntos
Sítios de Ligação , Domínio Catalítico , Fosfatases de Especificidade Dupla/química , Fosfatases da Proteína Quinase Ativada por Mitógeno/química , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Proteínas Tirosina Fosfatases/química , Sequência de Aminoácidos , Aminoácidos , Sequência Conservada , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Humanos , Ligação de Hidrogênio , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Mutação , Ligação Proteica , Conformação Proteica , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo
6.
Commun Biol ; 3(1): 441, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796911

RESUMO

Acetyl coenzyme A (Ac-CoA)-dependent N-acetylation is performed by arylalkylamine N-acetyltransferase (AANAT) and is important in many biofunctions. AANAT catalyzes N-acetylation through an ordered sequential mechanism in which cofactor (Ac-CoA) binds first, with substrate binding afterward. No ternary structure containing AANAT, cofactor, and substrate was determined, meaning the details of substrate binding and product release remain unclear. Here, two ternary complexes of dopamine N-acetyltransferase (Dat) before and after N-acetylation were solved at 1.28 Å and 1.36 Å resolution, respectively. Combined with the structures of Dat in apo form and Ac-CoA bound form, we addressed each stage in the catalytic cycle. Isothermal titration calorimetry (ITC), crystallography, and nuclear magnetic resonance spectroscopy (NMR) were utilized to analyze the product release. Our data revealed that Ac-CoA regulates the conformational properties of Dat to form the catalytic site and substrate binding pocket, while the release of products is facilitated by the binding of new Ac-CoA.


Assuntos
Acetilcoenzima A/metabolismo , Arilalquilamina N-Acetiltransferase/metabolismo , Biocatálise , Insetos/enzimologia , Acetilação , Animais , Arilalquilamina N-Acetiltransferase/química , Monoaminas Biogênicas/química , Monoaminas Biogênicas/metabolismo , Domínio Catalítico , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
7.
Vaccine ; 33(35): 4321-9, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25858857

RESUMO

Researchers are currently involved in a strong effort to find a safe and effective vaccine against highly pathogenic avian influenza H5N1 viruses. Toward that goal, we obtained soluble recombinant flagellin (FliC) of Salmonella typhimurium to be used as a mucosal adjuvant for H5HA subunit vaccine development. Intranasal immunization of H5HA antigen with recombinant FliC protein in an oil-in-water emulsion increased H5HA-specific IgG and IgA titers in sera, bronchoalveolar lavage fluids (BALFs), and nasal washes. Use of FliC adjuvant for intranasal immunization further augmented B-cell responses in mucosal environments via increased IgA titers in BALFs and nasal washes. Increases in IgA and IgG titers through the use of FliC adjuvant in intranasal immunization correlated with higher neutralizing antibody titers in sera and BALFs and higher numbers of IgG- and IgA-secreting B cells in spleen and cervical lymph nodes. High levels of IL-17A cytokine production were also found in stimulated T cells of spleen and cervical lymph node cells, only by intranasal immunization particularly with the use of FliC adjuvant in oil-in-water emulsions. These findings may provide useful information toward the development of H5HA mucosal influenza vaccines.


Assuntos
Anticorpos Antivirais/biossíntese , Flagelina/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunidade nas Mucosas , Imunoglobulina A/biossíntese , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Interleucina-17/metabolismo , Adjuvantes Imunológicos , Administração Intranasal , Animais , Anticorpos Antivirais/sangue , Linfócitos B/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Emulsões , Feminino , Flagelina/administração & dosagem , Flagelina/genética , Imunoglobulina A/sangue , Interleucina-17/biossíntese , Interleucina-17/imunologia , Camundongos Endogâmicos BALB C , Líquido da Lavagem Nasal/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas Recombinantes/imunologia , Salmonella typhimurium/química , Linfócitos T/imunologia , Linfócitos T/virologia , Vacinas de Subunidades/administração & dosagem , Vacinas de Subunidades/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...